The Neuropsychiatry of Lyme disease

Dr Sandra Pearson, MB ChB, MRCPsych
Consultant Psychiatrist and Medical Director
www.LymeDiseaseAction.org.uk

My Job Description

The Medical Director is primarily responsible for providing medical input to strategy and information products:

- reviewing medical information before publication;
- delivering content for information products as required;
- maintaining knowledge of relevant medical developments;
- cascading medical information as appropriate;
- medical consultancy role.

History of Illness: First Six Months

- Tick bite: July 2008 - early antibiotics
- Flu-like illness/double vision/ noise sensitivity/malaise
- EM rash August 2008: Back of Left knee → persisted
- Insidious neurological symptoms ++ 6 months
- Cranial 6th nerve palsy → double vision
 Confirmed by ENG
- Ataxia = Unsteady gait, dizziness
- Memory Problems + Confusion
- Cognitive slowing + Inattention = ‘Brain Fog’
- Jan 2009→GP → A&E ? Encephalitis Lyme serology : Negative (ELISA , WB)
- Sensory abnormalities/ ↓ reflexes
- ↑CRP ↑viscosity
- MRI : T2 areas of high signal

History of Illness 2

- Jan 2009: Headache & pain++, fevers/chills, visual hallucinations, insomnia, nightmares, sleeps ++, mood swings
- Doxycycline →
- Feb 2009: ? Autonomic dysfunction - ? POTS
 (↑pulse>30/min on standing)
- May 2009: 1:80 IFAT Babesia → Atovaquone + Azithromycin
- May 2009: All differentials excluded.LP ①
- May 2009: Uveitis
- May 2009 → AF (1st episode)
- Sep 09 - Jan 2010: Gradual relapse off antibiotics
- Nov 2009 → Q Square → LP ② (↑ pressure and protein),
 POTS, Cognitive inefficiency,
- April 2010 IV Ceftriaxone → Good response 90-95%

Serology Test Results

<table>
<thead>
<tr>
<th>NHS</th>
<th>Jan 09: Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Biomerieux Vidas ELISA</td>
</tr>
<tr>
<td></td>
<td>Immunetics CE ELISA</td>
</tr>
<tr>
<td></td>
<td>Trinity Biotech Lyme+Vise Immunoblots IgM + IgG</td>
</tr>
<tr>
<td>May 09: Negative</td>
<td>Repeat tests</td>
</tr>
<tr>
<td></td>
<td>DiasoningG+H+M EIA</td>
</tr>
<tr>
<td></td>
<td>CSF IgG immuno</td>
</tr>
<tr>
<td></td>
<td>CSF C6 BA</td>
</tr>
<tr>
<td>Nov 09: Not done</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Private</th>
<th>'Weak indeterminate'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 09:</td>
<td>Igenex Immunoblot</td>
</tr>
<tr>
<td></td>
<td>IgM p83-93kDa</td>
</tr>
<tr>
<td></td>
<td>IgG p23-25kDa, p31, p34, p39</td>
</tr>
<tr>
<td></td>
<td>Igenex Immunoblot +ve bands</td>
</tr>
<tr>
<td></td>
<td>IgM p41kDa</td>
</tr>
<tr>
<td></td>
<td>IgG p41kDa</td>
</tr>
<tr>
<td></td>
<td>Igenex PCR serum Negative</td>
</tr>
</tbody>
</table>

Netherlands June 2012

IgM and IgG ELISA	Negative
IgM Immunoblot	Negative
IgG Immunoblot	p23,p30,p39
The Neuropsychiatry of Lyme disease

The Journey
- Shock
- Disbelief
- Fear
- Self-blame
- Loss
- Abandonment
- Entrapment
- Betrayal
 - Realisation
 - Recovery

What is Lyme Disease?
An infectious disease caused by the bacterium *Borrelia burgdorferi* – a spirochaete.

Transmitted to humans by ticks:

Borrelia vs Syphilis
Similarities
- Spirochaete → 'New Great Imitator' ¹
- Stages of illness - latency, dissemination – but early CNS seeding is recognised ²
- Multisystem: Skin, Nervous system, Joints, Eyes, Cardiovascular + other organs.
- Persistence despite immune activation ³
- Difficult to culture - fastidious
- Treated with antibiotics

1. Pachner AR et al 1988
3. The mechanisms for persistence probably vary (Blaser et al 2001)

Borrelia vs Syphilis
Differences ³

<table>
<thead>
<tr>
<th>Borrelia</th>
<th>Syphilis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borrelia burgdorferi sensu lato - 1981</td>
<td>Treponema pallidum pallidum - 1905</td>
</tr>
<tr>
<td>Humans: Inadvertent hosts</td>
<td>Obligate human pathogen</td>
</tr>
<tr>
<td>Zoonosis - Complex Life cycle</td>
<td>Sexually transmitted</td>
</tr>
<tr>
<td>Complex Genome - Linear DNA 910,725 bp</td>
<td>Genome – Circular DNA 1,138,006 bp</td>
</tr>
<tr>
<td>12 linear + 9 circular plasmids</td>
<td>No plasmids</td>
</tr>
<tr>
<td>610,694 bp → lipoproteins</td>
<td>25% smaller than Borrelia</td>
</tr>
</tbody>
</table>

¹. Blaser et al 2001

Neuropsychiatry - Borrelia spp.⁴

Borrelia burgdorferi sensu lato
- *Borrelia burgdorferi* sensu stricto (USA + Europe)
- *Borrelia garinii* (Europe) ↓
- *Borrelia afzelii* (Europe) ↓
- *Borrelia spielmanii* (rare) (Europe) ↓

Accounts for some of the varying presentations

4. Stanek G et al 2011
Neuroborreliosis: History

- 1909: Afzelius: Tick-bite → Erythema chronicum migrans
- 1922: Garin & Bujadoux → Tick Paralysis
- 1930: Hellerstrom → EM → Encephalitis
- 1941: Bannwarth → Lymphocytic meningoradiculitis (Polyneuritis often with facial palsy)
 Bannwarth syndrome → LNB
- Late 1970s: Lyme disease → Tick bite, EM + Juvenile arthritis
- 1981: Willy Burgdorfer → Borrelia burgdorferi

Neuroborreliosis in Context

• Lyme disease
• Immune Response
• Neuroborreliosis
• Human Context
• Co-infections

Human Nervous System 1

Central Nervous System: Enveloped by Meninges + Cerebrospinal Fluid
• Brain
• Spinal cord
• Cranial nerves

Peripheral Nervous System:
• Sensory nerves
• Motor nerves

Autonomic nervous system:
• Sympathetic
• Parasympathetic

Blood-brain-barrier → 'Immune privileged site'

Human Nervous System 2

Human Nervous System 3

Early Neuroborreliosis: Symptoms

- Patients may not recall a tick bite or rash
- Neurological symptoms may be the presenting sign
- Headache
- Flu-like illness
- Myalgia
- Fleeting arthralgia (joint pains)
- Photophobia
- Dizziness

5. Fallon B et al 1994
Early Disseminated Neuroborreliosis

< 4 - 6 months
- Meningitis – ↓ signs of meningism
- Cranial neuritis – Facial palsy, double vision
- Sensory and Motor Radiculitis → neuropathic pain + weakness
 = Bannwarth Syndrome
- Encephalitis – fluctuating disturbances of mood, sleep, concentration + memory
- Myelitis
- Cerebral vasculitis
- Peripheral neuropathy – numbness, paraesthesia, weakness (↓ reflexes, vibration sense)

Late Disseminated Neuroborreliosis

> 6 months.... Fluctuating course
- Encephalomyelitis – severe, said to be rare → spastic paresis, transverse myelitis, cerebellar syndrome, hemiparesis
- Encephalopathy – subtle severe cognitive changes → ‘brain fog’, word-finding difficulties, dyslexia, memory problems, spatial disorientation, sleep disturbance, irritability, mood swings, anxiety, noise sensitivity, tinnitus, seizures, tremor.
- Autonomic Neuropathy – POTS,
 + Profound fatigue and malaise

Differential Diagnosis: LNB

- Multiple Sclerosis (demyelination)
- Stroke
- Bell’s Palsy
- Parkinson’s disease
- Dementia
- Delirium
- ALS-like syndrome
- Guillain-Barre
- CFS/ME *
- Various Psychiatric Disorders: Depression, Bipolar Affective Disorder, OCD, Psychosis, GAD, Panic, Hypochondriacal *, Somatoform *, Dissociative disorders *

* = Diagnoses of exclusion

Diagnostic Cautions: LNB/Fallon

- ? Markers of non-psychiatric disease
- ? Atypical presentation
- ? Older patient > 50 years
- ? No personal or family psychiatric history
- ? Poor response or excessive side-effects to medication
- ? No psychological precipitants or 2⁰ gain

Comorbid Psychiatric conditions may occur in LNB

Differential Diagnosis: LNB Children

- Attention Deficit Disorder (ADD)
- Attention Deficit Hyperactivity Disorder (ADHD)
- Autism-like Disorder
- Behavioural Problems
- → Problems attending School
- → May Affect Educational and Social Development
- → Parental/ Family strain
- → Children also may be affected indirectly if parent has Lyme disease

Neuroborreliosis: General Tests

- Inflammatory markers may be normal eg. ESR, CRP or plasma viscosity
- Nerve Conduction studies may be normal
- Nerve biopsy: peripheral small fibre damage
- EEG: Diffuse slowing or epileptiform activity
- MRI brain scan: T2 white matter hyperintensities
- SPECT/PET scan: Hypoperfusion → Frontal lobes
- Cognitive neuropsychological testing
- Tilt-table testing: Autonomic neuropathy
- Serology tests......?
Neuroborreliosis: Lumbar puncture

- In very early or late-stage LNB the CSF may appear normal.
- LP may show monocytic pleocytosis, mildly elevated protein and in some cases ↑IgG index or oligoclonal bands.
- Lymphocytic pleocytosis (↑WBC), as well as several other CSF abnormalities, were frequent among patients with B. garinii isolated from CSF but were rare among patients in the B. afzelii group.
- Despite these various findings, most guidelines require evidence of CSF pleocytosis + intra-thecal antibody production for diagnosis.
- PCR insensitive – 30% sensitivity CSF.

EFNS Guidelines: Neuroborreliosis

Criteria for Diagnosis of Neuroborreliosis:

(3= Definite; 2= Possible)

- Neurological symptoms
- Cerebrospinal fluid(CSF) pleocytosis
- Bb-specific antibodies produced intrathecally
- PCR and CSF culture may be corroborative if symptom duration is <6 weeks, when Bb antibodies may be absent. PCR otherwise not recommended.

Treatment Recommendations Adults:

Acute LNB: Symptom duration< 6 months
- Symptoms confined to PNS including meningitis
- Single 14 day course of antibiotics
- Oral Doxycycline 200mg per day or
- IV Ceftriaxone 2g per day

But CNS and Late LNB (symptoms>6 months)
- IV Ceftriaxone 2g per day 21 days ←(GPP)

EFNS Guidelines: Neuroinflammation

- Dissemination via bloodstream or PNS/Lymphatics?
- Bb attaches to endothelial lining + ?platelets
- Penetration of BBB?
- Immune activation → Pro-inflammatory cytokines and chemokines eg CXCL13
- Direct cytotoxicity (apoptosis and astroglialosis)
- Induction of neurotoxins (Nitric Oxide, quinolinic acid →NMDA agonist)
- Autoimmune: Ab against flagellin cross reacts with neural tissue.

EFNS Guidelines: Treatment

- ‘The choice of the best antibiotic, the preferred mode of administration, and the duration of treatment are the still debated issues.’
- ‘There are no randomized treatment studies of European late LNB.’
NICE Guidelines?

- Depression, Bipolar Affective Disorder, GAD.
- Depression in Adults with a Chronic Physical Health Problem (↑ suicide risk)
- Delirium
- Dementia
- Neuropathic pain

- HPA Protocol Encephalitis
- HPA Protocol Meningitis

- Doctors need accredited information on Lyme borreliosis

BMJ Letters 11; 16 July 2012