Host defence against Borrelia
Dr. Marije Doppenberg-Oosting

The 14th LDA Conference
September 12th 2015
Buckingham House
Murray Edwards College
University of Cambridge

Marije.Doppenberg-Oosting@radboudumc.nl

Borreliosis (Lyme disease)

Erythema Migrans
Lyme Disease

Borrelia sensu lato
-Bovis (EU)
-Scapularis (USA)

Lyme disease: after a tick bite

Nature Communications

Ötzi’s DNA reveals health risks and relations.
Ötzi’s genome hints at heart disease, bacterial infection and common ancestry with modern-day Sardinians.

"Ötzi’s genome also hints at other health problems: Zink’s team found almost two-thirds of the genome of "Borrelia burgdorferi", a bacterium that causes Lyme disease."
Infection of Humans with Borrelia

Borrelia infections in The Netherlands

1 Early disease→ EM (75% of patients)
2 Early disseminated phase→ multiple EM, neurologic, and/or cardiac findings, malaise
3 Late (persistent) Lyme disease→ joint swelling and pain, neurologic manifestations, paralysis, chronic arthritis
B. burgdorferi: Arthritis
B. afzelii: Skin disorders; ACA
B. garinii: Neurological disorders; paralysis

How ticks get infected with *Borrelia* spirochetes

Radboundumc

Borrelia belongs to the family of Spirochetes

Causative agents: *Borrelia burgdorferi* sensu lato (*B. burgdorferi, B. afzelii, B. garinii*)

Radboundumc

Dissemination

1. Tick-gut: Osp
2. Tick-human: Salp
3. Human-matrix: Adhesins
4. Human-endothelium: MMPs
5. Human-cell binding: p66 integrin

Radboundumc
Escape mechanisms

- Change of coat
- Change of shape?
- Recognition of Borrelia
- Salivary glands
- NFκB
- IL-6
- IFN-γ
- IL-8
- IL-1β
- IL-17
- Innate immune response
- Adaptive immune response
- Pro-/anti-inflammatory cytokines

Innate immunity
Early defense mechanism; fast but unspecific

- Cells of immune system
- Pro-/anti-inflammatory cytokines

Adaptive immunity
Later defense mechanism; slower but specific

- Antibodies
- Memory

Focus of my research

- How does a macrophage know what to eat?
- RECOGNITION
- Surface of Borrelia exists out of building blocks...
- Many types of building blocks...
How is Borrelia recognized?

Borrelia bacteria

The host response

Recognition

Cytokine response

PRR-focused research

PRR Pattern Recognition Receptor

Secreted PRRs

TLRs

NLRs

PRR-focused research

SNP

silencing

normal

blocking

PRR Pattern Recognition Receptor

Secreted PRRs

TLRs

NLRs

PRR Pattern Recognition Receptor

Secreted PRRs

TLRs

NLRs
Research using blocking antibodies
Example: PBMC

Recognition by PRRs

Conclusion
Borrelia is recognized by TLR1 but not TLR6

Do SNPs in TLRx influence *Borrelia*-derived cytokines?

Link SNPs to clinical outcome

<table>
<thead>
<tr>
<th></th>
<th>IL-23R Wt</th>
<th>IL-23R He</th>
<th>IL-1β Wt</th>
<th>IL-1β He</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>102</td>
<td>25</td>
<td>102</td>
<td>25</td>
</tr>
<tr>
<td>SNM</td>
<td>16</td>
<td>4</td>
<td>16</td>
<td>4</td>
</tr>
</tbody>
</table>

Clinical signs:
- joint: 20 (2%) 7 (28%)
- back/pain: 20 (6%) 23 (24%)
- heart: 6 (6%) 0 (0%)
- ACA: 6 (6%) 0 (0%)

no Lyme: 62 (62%) 18 (16%)
Lyme in past: 27 (27%) 5 (24%)
possible Lyme: 9 (9%) 1 (4%)
not known: 3 (3%) 1 (4%)
What we demonstrated so far

- Study effect of microbiome and habits on immune responses
 1. N = 500
 2. Lyme patients

Future plans

What can we do with this knowledge?

- In the future: inhibit or prevent infection with Borrelia
- Screen patients on variants to predict clinical outcome
- Personalize treatment strategies

Acknowledgements

Department of Internal Medicine
Marije Doppenberg-Oosting
Sanne Brouwer
Kathrin Schnur
Hidde Vrijmoeth
Marnix Kerschmidt
Martijn Jager
Kathleen Karurganis
Jos van der Meer

Microbiology Department

Department of Genetics

Department of Laboratory Medicine

Harvard/Broad Institute

http://www.humanfunctionalgenomics.org