Almost everything you wanted to know about Borrelia

Richard Bingham
The University of Huddersfield

The Questions

- Thanks for all the questions, sorry I don't have time to answer them all - please see me afterwards.
- Sorry, I don't know about:
 - cycling (rotating) antibiotics
 - lengthy antibiotic treatment
- Two of the questions were answered during my talk in 2014. I have avoided repeating that material.

What does Borrelia live on food/nourishment wise?

- Borrelia can only utilise a small range of carbohydrates. These include: glucose, mannose, maltose, glycerol, N-Acetylglucosamine (GlcNAc). [1]
- In the tick-stage of the Borrelia life cycle Glycerol appears to be an important source of energy. [2]
- In the human body, Glucose is the primary source of energy for Borrelia.
 - $-\,$ The concentration in human blood is ~95 mg per 100ml $\,$ [3]
 - This may increase up to 140 mg/100ml after a meal
 - Low glucose levels will kill you before killing the Borrelia
- [1] von Lackum K, Stevenson B (2005) Carbohydrate utilization by the Lyme borreliosis spirochete, Borrelia burgdorferi. FEMS Microbiol Lett 243: 173–179.
- [2] Pappas (2011) Borrelia burgdorferi requires glycerol for maximum fitness during the tick phase of the enzotic cycle PLoS Pathog. PLoS Pathog.
- [3] Young, (1971) CLINICAL CHEMISTRY, Vol. 17, No. 5,

- As an obligate parasite with a minimal genome Borrelia must scavenge nutrients from the host.
- · amino acids required to make proteins
- · fatty acids for lipids/lipoproteins
- nucleosides for the biosynthesis of DNA/RNA

- For the synthesis of DNA, Borrelia relies on host-derived sources of
 - deoxypurine bases (A & G) and
 - deoxypyrimidine bases (C & T)

See the introduction to: Lawrence, (2009). Borrelia burgdorferi bb0426 encodes a 2'-deoxyribosyltransferase that plays a central role in purine salvage. Molecular Microbiology, 72(6), 1517–1529.

This highlights an interesting different between Lyme disease and relapsing fever Borrelia

- Relapsing fever *Borrelia have a functional* ribonucleotide reductase (RNR).
 - This enzymatically reduces ribonucleotides to their deoxy-analogues
 - Allows greater biochemical flexibility
- Lyme disease Borrelia lack a functional RNR and so needs to acquire the deoxynucleotides from the host.

Lawrence et al (2009). Borrelia burgdorferi bb0426 encodes a 2'deoxyribosyltransferase that plays a central role in purine salvage. Molecular Microbiology, 72(6), 1517–1529.

Other Questions about Salt/Sugar/Alcohol/Alkaline diets

- Your body will maintain homeostasis.
- Attempting to adjust these concentrations by altering diet is futile (and not safe).
- I am not aware of artificial sweeteners influencing Borrelia growth.

See this paper for typical values of various salts/sugars in 10 people Young, CLINICAL CHEMISTRY, Vol. 17, No. 5, 1971)

Is it possible that levels of Borrelia can be reliably measured in the blood?

- A problem- The adaptive immune response rapidly clears Borrelia from the blood
- B. burgdorferi rarely achieves more than 100 cells/ml [1]
- However the inflammatory response is out of proportion to the number of cells...
- The intense inflammatory response is due to bacterial surface molecules and their interactions with the innate immune modulators, in particular the Toll-like receptors.
- Will this indicate the effectiveness of therapy?
 - No, because of rapid clearance from the blood
 - Borrelia invade various tissues

[1] Borrelia: Molecular Biology, Host Interaction and Pathogenesis By D. Scott Samuels

Escaping from the blood (Hematogenous dissemination) This figure is taken from Norman (2008) PLoS Pathog. 2008 Oct 3;4(10): Molecular mechanisms involved in vascular interactions of the lyme disease pathogen in a living host.

Size?

- Borrelia are approximately 0.2 x 20 micrometers.
- · Cell widths are reproducible
- Cell lengths vary with culture conditions and source of the Borrelia.
- I was going to use an analogy to a human hair hut:
 - not really useful.
 - The width of a human hair can range from about 20 to 200 microns

- The human head is about 20 cm (longest diameter)
- Borrelia is 20 μm (length)

x1000 = 20 mmx10 = 200 mm or 20 cm

- So the human head is ~10,000x larger than Borrelia
- I guess the lecture theatre might be about 20m 20 metre/10,000 = 0.2 cm or 2 mm

So if we imagine that our head is as large as a 20 metre lecture theatre, then a single Borrelia cell is like a fragment of human hair 2 mm long.

For comparison

- Bone marrow cell (diameter ~40 μm)
- Red blood cell (diameter ~7-8 μm)
- Borrelia width 0.2 ☑m, length ~20 µm

Would raising the body temperature kill Borrelia?

"no growth or motility of any strain was observed after 4 days at 42C."

- Hubálek Z1, Halouzka J, Heroldová M (1998). Growth temperature ranges of Borrelia burgdorferi sensu lato strains... J Med Microbiol. Oct;47(10):929-32
- Both Borrelia and humans are temperature sensitive
- · So don't try this at home!

The Rife Machine

- The Rife Machine is based on the pseudoscience of Radionics.
- The idea that diseases can be diagnosed and treated by "tuning in" or bombardment with "radiolike" frequencies
- There is no evidence that this does anything
- Not to be confused with MRI scanners!!!

The Rife Machine?

· Electromagnetic Radiation

• An excellent summary can be found here:

http://www.cancerresearchuk.org/aboutcancer/cancers-in-general/cancerquestions/rife-machine-and-cancer

To what extent is Borrelia an intracellular pathogen?

- Many papers describe an extracellular niche
 - associatioin with the extracellular matrix
- In previous lectures I have also discussed paracellular invasion (See Norman et al, 2008)
- Here I will summarise the evidence that Borrelia can invade non-phagocytic cells
 - Synovial cells
 - Neuronal cells

PLoS Pathog. 2008 Oct 3;4(10):e1000169. Molecular mechanisms involved in vascular interactions of the Lyme disease pathogen in a living hostNorman MU1, Moriarty TJ, Dresser AR, Millen B, Kubes P, Chaconas G.

- A Borrelia infection model using cell cultures of
 - human synovial cells and
 - human macrophages.
- morphologically intact Borrelia burgdorferi were found in the cytosol of synovial cells without engulfment by cell membrane folds or phagosomes

Human synovial cells infected with Borrelia

- Ceftriaxone added at a concentration of either 1.0 or 4.0 micrograms/ml for 9 days
- · No antibiotics after day 10
- Supernatants were probed for viable spirochetes once a week for 63 days.
 - No viable spirochetes found by either phase contrast microscopy (PCM) or re-cultivation.
- Treatment with ceftriaxone eradicated all extracellular *Borrelia burgdorferi*.

Intracellular Borrelia survived

- After 63 days the synovial cells were lysed.
- · Viable spirochetes were reisolated
- "cytosolic Borrelia burgdorferi were still detectable by TEM. After lysis of the SC at day 63, viable Borrelia burgdorferi were identified 7 days later by PCM and recultivation from the cell lysates; this did not occur in the uninfected controls"

Rheumatol Int. 1996;16(3):125-32. Intracellular persistence of Borrelia burgdorferi in human synovial cells. Girschick HJ1, Huppertz HI, Rüssmann H, Krenn V, Karch H,

Invasion of human neuronal and glial cells

- B. burgdorferi were shown to interact with and invade human neuronal and glial cells
 - Borrelia remained viable
- Gentamicin was used to kill extracellular Borrelia
- "These results suggest that the association of infectious B. burgdorferi with these cell lines is a specific and targeted binding mechanism, rather than a non-specific endocytic event"
- Microbes Infect. 2006 Nov-Dec;8(14-15):2832-40. Epub 2006 Sep 22. Invasion of human neuronal and glial cells by an infectious strain of Borrelia burgdorferi. Livengood JA1, Gilmore RD Jr.

Human cortical neuronal cells (HCN-2)

Red = Borrelia associated with the cell surface White arrows indicate intracellular Borrelia

Figure from: Microbes Infect. 2006 Nov-Dec;8(14-15):2832-40.. Invasion of human neuronal and glial cells by an infectious strain of Borrelia burgdorferi. Livengood JA1, Gilmore RD Jr.

no cellular cytotoxicity

- "...these cells could serve as a site for B. burgdorferi to be sequestered from the host's immune defenses, and/or act as a locale for prolonged infection without causing immediate harm or cell death to their host"
- However, there is likely to be some physiological change in the function of the cell.

There are many unknowns

- The mechanisms involved in cell penetration are unknown
- What factors determine if Borrelial will survive within cells?
- Clinical relevance?

Summary

- The infected cell is not killed-limited immune response.
- Intracellular Borrelia are shielded from the antibiotics.
- Borrelia remained viable for the duration of the experiment (several weeks)

Acknowledgments

University of Huddersfield

- Gemma Brown
- Lenka Stejskal
- Sophie Cherrington
- Abi Broxham

Funding

diamond